PWM adalah singkatan dari Pulse Width Modulation. Karena kita akan belajar PWM di arduino maka saya akan mengutip pengertian PWM dari situs arduino.cc. Di bagian dokumentasinya tentang Basics of PWM (Pulse Width Modulation) disebutkan bahwa PWM adalah teknik untuk mendapatkan hasil analog dengan cara digital. Disini yang di maksud analog adalah tegangan analog yang nilainya antara 0 volt sampai 5 volt. Sedangkan yang dimaksud digital adalah sinyal digital pada arduino yaitu 0 volt mewaliki sinyal 0 atau LOW, lalu 5 volt mewakili sinyal 1 atau HIGH. Jadi teknik untuk mendapatkan hasil analog dengan cara digital bisa diartikan sebagai teknik untuk mendapatkan tegangan analog (0 sampai 5 volt) dengan cara memainkan sinyal digital yaitu dengan membuat sinyal HIGH dan LOW secara bergantian terus menerus dengan frekuensi tetap. Umumnya pada Arduino kita sering menggunakan PWM untuk mengatur kecerahan sebuah LED, kecepatan sebuah Motor, menjalankan motor servo, dll.
Untuk memahami PWM dengan mudah kita bisa menggunakan program blink (blinking LED) yang biasa kita gunakan ketika pertama kali belajar arduino. Berikut sketch program blink yang biasanya ada di example arduino IDE, bisa kalian buka melalui File -> Examples -> 01. Basic -> Blink :
Perhatikan program blink di atas, LED_BUILTIN (pin 13) diberi sinyal HIGH dan LOW secara bergantian dengan jeda waktu masing-masing 1 detik, sehingga hasilnya nanti LED yang tersambung pada pin 13 akan nyala selama 1 detik kemudian mati selama 1 detik, begitu seterusnya selama arduino masih dinyalakan. Program blinking LED ini sebenarnya bekerja seperti sinyal PWM akan tetapi karena jeda waktunya (periode) yang relatif lama sehingga belum bisa menghasilkan tegangan analog, tetapi hanya menghasilkan tengan HIGH (5 volt) dan tegangan LOW(0 volt) secara bergantian pada output arduino. Dengan memperkecil periode atau jeda waktu akan menyebabkan pergantian output HIGH dan output LOW yang sangat cepat sehingga didapat tegangan ouput analog.
Sinyal PWM diperlihatkan seperti gambar 1 di atas yaitu berupa gelombang kotak (square wave). Karena gelombang maka PWM memiliki periode dan frekuensi. Periode adalah waktu yang dibutuhkan untuk menghasilkan 1 pulsa. Sedangkan frekuensi adalah banyaknya pulsa yang dihasilkan dalam 1 detik. Yang di maksud 1 pulsa adalah jumlah dari 1 pulsa HIGH dan 1 pulsa LOW (perhatikan gambar 1 diatas). Secara matematis hubungan antara periode dan frekuensi bisa di tuliskan :
T = 1 / f atau f = 1 / T
T = periode (satuan detik)
f = frekuensi (satuan Hz)
Selain itu sinyal PWM juga memiliki besaran yang di sebut dengan duty cycle. Duty cycle adalah rasio dari 1 pulsa HIGH dengan 1 pulsa. Secara matematis dapat di tulis :
Duty cycle = 1 pulsa HIGH / 1 pulsa atau % Duty cycle = (1 pulsa HIGH / 1 pulsa) x 100
dengan 1 pulsa = 1 pulsa HIGH + 1 pulsa LOW
Agar lebih paham tentang duty cycle perhatikan gambar 2 di bawah ini :
Duty cycle inilah yang akan menghasilkan variasi tegangan analog output. Jika duty cycle nya 100 % maka akan di dapat tengangan ouput sama seperti sinyal HIGH (5 volt). Jika duty cycle nya 50 % akan di dapat tegangan output 1/2 x 5 volt = 2.5 volt. Jadi secara matematis tegangan analog output dapat di tulis :
Tegangan analog output = Duty cycle X sinyal HIGH
Bisakah kamu menghitung berapa tegangan output yang di hasilkan jika duty cycle nya 25 % dan tegangan HIGH nya 5 V ?
Jika program blinking LED diatas diaggap mengeluarkan sinyal PWM maka dapat di ambil hasil periode nya adalah 2 detik. Sedangkan frekuensinya adalah 0.5 Hz. Dan duty cycle nya adalah 50 %. Akan tetapi sayangnya frekuensi 0.5 Hz ini belum cukup untuk menghasilkan tegangan analog ouput. Lalu bagaimana caranya agar bisa menghasilkan analog output dengan sinyal PWM. berikut adalah beberapa cara untuk membuat sinyal PWM di arduino :
1. Membuat Sinyal PWM dengan memodifikasi program Blinking LED
Dengan memodifikasi program Blinking LED diatas kita bisa membuat sinyal PWM di pin manapun di arduino. Berikut contoh modifikasi program nya :
delay() di ganti dengan delayMicroseconds sehingga bisa menghasilkan frekuensi lebih tinggi. Pada program di atas akan di hasilkan sinyal PWM di pin 13 dengan dengan periode 1000 us atau frekuensi 1 kHz dan Duty Cycle 50 %. Untuk mengatur Periodenya silahkan ubah variabel periode (nilai ini mewakili periode PWM dalam satuan us). Sedangkan untuk mengatur Duty Cycle silahkan atur nilai variabel dutyCycle dengan nilai antar 0 sampai 100. 0 mewakili Duty Cycle 0 % dan 100 mewakili 100 %.
2. Membuat Sinyal PWM dengan analogWrite()
Memakai fungsi analogWrite() adalah cara yang paling umum yang biasa digunakan untuk mendapatkan sinyal PWM dari output arduino. fungsi ini tidak bisa di gunakan di semua pin pada arduino. Hanya pin PWM yang bisa kita gunakan, biasannya ada tanda tilde (~) pada pin tersebut. Selain itu kekurangannya adalah kita tidak bisa mengatur frekuensi sinyal PWM nya.
Pada arduino Uno, Nano, mini atau Lillypad (yang menggunakan ATmega 8, 168, 328) memiliki 6 pin yang dapat digunakan sebagai pin PWM, pin 5,6,9,10,11,dan 3 menghasilkan PWM dengan frekuensi yang berbeda. pin PWM ini menggunakan fasilitas timer yang ada pada chip ATmega di arduino yaitu :
pin 5 dan 6 menggunakan Timer 0 dengan frekuensi default 980 Hz
pin 9 dan 10 menggunakan Timer 1 dengan frekuensi default 490 Hz
pin 3 dan 11 menggunakan Timer 2 dengan frekuensi default 490 Hz
Timer merupakan fasilitas yang ada di chip ATmega yang salah satu fungsinya dapat digunakan sebagai pewaktu atau cacahan suatu event. Mikrokontroler ATmega 8, 168, 328 memiliki 3 buah timer yaitu Timer0, Timer1 dan Timer2. Timer0 dan Timer2 memiliki kapasitas 8-bit sedangkan Timer1 memiliki kapasitas 16-bit. Apa yang dimaksud timer 8 bit dan 16 bit?.Timer 8-bit adalah pewaktu yang bisa mencacah atau menghitung hingga maksimal nilai0xFF heksa (dalam biner = 11111111).Sedangkan Timer 16-bit sama seperti timer 8-bit, hanya saja nilai maksimalnya mencapai 0xFFFF.
Fungsi analogWrite() menggunakan sintak:
analogWrite (pin, value)
pin = pin PWM arduino yang di gunakan. (Menggunakan type data int)
value = nilai duty cyclenya 0 untuk 0 % dan 255 untuk duty cycle 100% (Menggunakan type data int)
Selanjutkan kita akan mencoba fungsi analogWrite() dengan simulasi proteus untuk menguji pada pin 3 mewakili pin dengan frekuensi 490 Hz dan pin 5 mewakili pin dengan output frekuensi 980 Hz. Kemudian kita cek hasilnya dengan virtual osiloskop pada proteus apa benar pin pin tersebut menghasilkan frekuensi yang sesuai.
Pada gambar diatas, pin 3 terhubung dengan channel A virtual osiloskop (sinyal warna kuning). Dan pin 5 terhubung dengan channel virtual osiloskop (sinyal warna biru). Lalu kita upload program di bawah ini ke arduino nano di proteus.
Hasil simulasi diproteus :
Dari gambar di atas warna kuning adalah sinyal PWM dari pin 3 dan warna biru adalah sinyal PWM dari pin 5.
Untuk pin 3 :
Untuk pin 5 :
Dari hasil simulasi ternyata benar di hasilkan frekuensi sesuai dengan data di atas.
3. Menggunakan Library TimerOne
Library TimerOne ini menggunakan fasilitas Timer1 pada chip ATmega di arduino untuk kontrol sinyal PWM. Selain itu TimerOne, juga bisa digunakan untuk menjalankan interupsi secara berkala (periodik interrupt). Kita hanya bisa menggunkan 2 pin yang tersambung ke timer 1 yaitu pin 9 dan 10. Kelebihan menggunkan TimerOne untuk kontrol sinyal PWM adalah kita bisa mengatur frekuensi dari sinyal PWM tersebut. Selain itu kita bisa juga mengontrol duty cycle nya dengan resolusi lebih besar yaitu nilai 0 sampai 2023 (16 bit).
Untuk menggunkan library ini, silahkan install melalui Tools -> Manage Libraries kemudian search dengan kata kunci "TimerOne", lalu install library tersebut. Atau KLIK DISINI untuk mendownload library TimerOne dalam bentuk zip.
Berikut adalah contoh program menggunakan TimerOne untuk menghasilkan sinyal PWM :
Jika program di atas di jalankan maka akan menghasilkan sinyal PWM di pin 9 dengan dengan periode 1000 us atau frekuensi 1 kHz dan Duty Cycle 50 %. Untuk mengatur Periodenya silahkan ubah variabel periode (nilai ini mewakili periode PWM dalam satuan us). Sedangkan untuk mengatur Duty Cycle silahkan atur nilai variabel dutyCycle dengan nilai antar 0 sampai 1023. 0 mewakili Duty Cycle 0 % dan 1023 mewakili 100 %.
4. Menggunnakan Library PWM
Library ini jika di cari di arduino IDE melalui Tools -> Manage Libraries dengan menggunakan kata kunci PWM ternyata tidak saya temukan. Oleh karena itu untuk mengistall library ini kalian bisa mendownloadnya melalui link repository github nya yaitu https://github.com/terryjmyers/PWM atau donwload DI SINI. Silahkan download dalam bentuk file ZIP, kemudian install melalui arduino IDE dengan klik Skecth -> Include Libraries -> Add .ZIP Library... kemudian silahkan cari tempat menyimpan file ZIP nya dan Open.
Library PWM ini juga menggunakan fasilitas Timer1 pada chip ATmega di arduino untuk kontrol sinyal PWM. Jadi pada arduino uno, nano, dan mini hanya bisa di gunakan pada pin 9 dan 10. Berikut adalah contoh program sederhana menggunakan library PWM untuk membuat sinyal PWM :
Jika program di atas di jalankan maka akan menghasilkan sinyal PWM di pin 9 dengan frekuensi 100 Hz dan Duty Cycle 50 %. Silahkan mengubah nilai variabel frekuensi untuk mengubah nilai frekuensi sinyal PWM. Sedangkan untuk mengatur Duty Cycle silahkan atur nilai variabel dutyCycle dengan nilai antar 0 sampai 255. 0 mewakili Duty Cycle 0 % dan 255 mewakili 100 %.
Untuk mempelajari library ini lebih dalam, silahkan cek di beberapa example library nya dan silahkan di coba dan kembangkan pada project arduino anda.
0 comment:
Posting Komentar